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Abstract

Eigensolutions for all types of anisotropic elastic materials are obtained in terms of the eigenvalues and the
anisotropic elastic sti�ness. The generalized eigenvectors and eigensolutions in the degenerate and extra-degenerate

cases are obtained by the derivative rule. A complete set of unnormlized eigenvectors, now given in terms of the
elastic moduli, de®ne the Barnett±Lothe tensors by the same expressions irrespective of material degeneracy. Explicit
expressions of the Barnett±Lothe tensors are obtained in various forms depending on the multiplicity of eigenvalues.

These expressions complement the alternative expressions of Part I in terms of the elastic compliances. A new family
of extra-degenerate materials is found, suggesting the superabundance of such materials. A concise proof of the
equivalence of the eigensystems of the compliance-based and elasticity-based formalisms is given. Eigenrelations

applicable to all cases of material degeneracy are presented in both three-dimensional and six-dimensional matrix
formalisms. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Lekhnitskii (1963) showed that the general solutions of plane anisotropic elasticity may be represented
by analytic functions of the complex variables x� miy, where the mi's are the roots of a characteristic
equation depending on the elastic compliances. The representation allows the di�erential equations
governing the eigensolutions of displacements and stress potentials to be reduced to algebraic equations
for the corresponding eigenvectors. An alternative analysis approach, developed by Stroh (1958) and
others, yields the eigensolutions in terms of the anisotropic elastic moduli. While the results given in the
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earlier works were restricted to the case when the six roots of the characteristic equation are all distinct,
later work by Ting and Hwu (1988) presents the eigensolutions for materials that are degenerate but not
extra-degenerate.

In Part I of this paper, a systematic procedure was developed to obtain explicit expressions of the
eigensolutions for all types of anisotropic materials, whether nondegenerate, degenerate or extra-
degenerate. When the number of independent eigenvectors is smaller than the multiplicity of an
eigenvalue, additional eigensolutions must be found in terms of generalized eigenvectors and the latter
are determined by eigenrelations di�erent from those governing the usual eigenvectors. The generalized
eigenvectors and eigensolutions may be obtained by the derivative rule, as shown in Part I for the
Lekhnitskii formalism and in the following for the Stroh formalism.

In Part II of this paper, the eigensolutions and the Barnett±Lothe tensors for all types of anisotropic
materials are obtained in terms of the elastic moduli, i.e., the elements of �b�ÿ1: In this approach, the
displacement eigenvectors (the a-vectors) are to be determined from a 3 � 3 eigenmatrix G�m� whose
elements are quadratic functions of the eigenvalue m: In contrast, the approach in Part I was based on a
2� 2 eigenmatrix M�m� governing the last two components of the b-vectors. This asymmetry in the dual
formalism contributes to di�erences in the algebraic analysis and in the formal expressions of the
results. However, the two formalisms yield identical eigenvalues and equivalent systems of eigenvectors
and generalized eigenvectors. It is shown, as in Part I, that unnormalized eigenvectors and generalized
eigenvectors satisfy (modi®ed) orthogonality and closure relations, so that the Barnett±Lothe tensors
may be de®ned in the same manner regardless of material degeneracy. Identities involving these tensors,
some well known and others new, are shown to be the direct consequences of such de®nitions, and,
therefore, are also valid regardless of material degeneracy.

2. Eigenrelations in the dual formalism

An eigensolution for the displacement, stress potential, strain and stress is given by the following
expressions in terms of a complex eigenvalue m, a pair of eigenvectors a = {a1, a2, a3} and b = {b1, b2,
b3}, and an arbitrary analytic function f:

u � af�x� my�, q � bf�x� my�

fEg � E�m�af 0�x� my�, fsg �
X

P�m�
�
b2
b3

�
f 0�x� miy�, �1�

where u = {u, v, w }T, fqg � fFy, ÿFx, CgT, fEg � fEx, Ey, gyz, gxz, gxygT, fsg � fsx, sy, tyz, txz, txygT =
fFyy, Fxx, ÿCx, Cy, ÿFxygT and

E�m� �

266664
1 0 0
0 m 0
0 0 m
0 0 1
m 1 0

377775, P�m� �

266664
ÿm2 0
ÿ1 0
0 ÿ1
0 m
m 0

377775 �2a,b�

The ®rst two components of the b-vector are related by b1 � ÿmb2 because txy � ÿ@xFy � ÿ@yFx:
Substituting the third and fourth expressions of Eq. (1) into the anisotropic stress±strain relation
fEg � �b�fsg, one obtains the eigenrelation
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E�m�a �
�
b
�
P�m�

�
b2
b3

�
�3�

The matrices E and P of Eq. (2a,b) satisfy the identity ETP = PTE = 0. Hence Eq. (3) yields the
equations governing the eigenvectors a and b:

ET�m�
�
b
�ÿ1

E�m�a � G�m�a � 0, �4�

PT�m�
�
b
�
P�m�

�
b2
b3

�
� M�m�

�
b2
b3

�
� 0, �5�

as well as the characteristic equation determining the eigenvalue m:

D�m� � jG�m�j � 0 or d�m� � jM�m�j � 0: �6a,b�

Eq. (3) and the relation b1 � ÿmb2 imply the transformation rule between the a- and b-vectors:

a � YT�m�
�
b
�
266664
0 ÿm2 0
0 ÿ1 0
0 0 ÿ1
0 0 m
0 m 0

377775b, b � ÿdET�m�=dm
�
b
�ÿ1

E�m�a �7a,b�

and

b � J�m�
�
b2
b3

�
�7c�

where the matrices

J�m� �
24ÿm 0

1 0
0 1

35, Y�m� �

266664
1 ÿm 0
0 0 0
0 0 0
0 0 1
0 1 0

377775 �8a,b�

have the properties YJ�dP=dm, J�ETdP=dm and YT E is the 3� 3 identity matrix. We write

�
b
�ÿ1�

266664
C11 C12 C14 C15 C16

C12 C22 C24 C25 C26

C14 C24 C44 C45 C46

C15 C25 C45 C55 C56

C16 C26 C46 C56 C66

377775
and de®ne

Q �
24C11 C16 C15

C16 C66 C56

C15 C56 C55

35 R �
24C16 C12 C14

C66 C26 C46

C56 C25 C45

35, T �
24C66 C26 C46

C26 C22 C24

C46 C24 C44

35 �9a,b,c�

Then Eq. (2a,b) gives the following expressions of the eigenmatrices in Eqs. (4) and (5):
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G�m� � ET�m�
�
b
�ÿ1

E�m� � Q� m
ÿ
R� RT

�
� m2T, �10�

M�m� � PT�m�
�
b
�
P�m� �

�
l4�m� ÿl3�m�
ÿl3�m� l2�m�

�
�11�

where

l4�m� � b11m
4 ÿ 2b16m

3 � ÿ2b12 � b66
�
m2 ÿ 2b26m� b22

l3�m� � b15m
3 ÿ ÿb14 � b56

�
m2 � ÿb25 � b46

�
mÿ b24

l2�m� � b55m
2 ÿ 2b45m� b44 �12�

Since the eigenvalues cannot be real (Lekhnitskii, 1963), and in particular cannot be zero, the equation
G(0)a = Qa = 0 has no nontrivial solution for a. Hence Q is nonsingular. The matrix T may be
obtained from Q by interchanging the x- and y-coordinate directions and rearranging the ®rst pair of
rows and columns in the resulting matrices. Therefore, T also cannot be singular.

Indeed Q and T are positive de®nite (Ting, 1996a). For a strain state withEy � Ez � gyz � 0, E � �b�fsg
yields fsx, txy, txzgT�QfEx, gxy, gxzgT and the strain energy density is 1

2fEx, gxy, gxzgQfEx, gxy, gxzgT: Hence
Q must be positive de®nite and a similar argument applies also to T.

We next show that the matrix G never vanishes. Consider266664
1 0 0 0 m
0 1 0 0 0
0 0 1 0 0
0 0 m 1 0
0 m 0 0 1

377775�b�ÿ1
266664
1 0 0 0 0
0 1 0 0 m
0 0 1 m 0
0 0 0 1 0
m 0 0 0 1

377775

�

266664
G11�m� C12 � mC26 C14 � mC46 G13�m� G12�m�
C12 � mC26 C22 C24 C25 � mC24 C26 � mC22

C14 � mC56 C24 C44 C45 � mC44 C46 � mC24

G13�m� C25 � mC24 C45 � mC44 G33�m� G23�m�
G12�m� C26 � mC22 C46 � mC24 G23�m� G22�m�

377775
If all elementsGij�m� vanish for some m, then the matrix on the right hand side is singular because its
®rst, fourth and ®fth column vectors cannot be all independent. This result contradicts the premise that
�b�ÿ1 is non-singular. Therefore G�m� has at least one nonvanishing column vector.

For any root m0 of the characteristic equation, the matrix G�m0� is singular and therefore it has at
most two independent column vectors. If G�m0� has only one independent column vector for some
eigenvalue m0 (this means that all elements of the adjoint matrix Ĝ�m0� vanish), then Eq. (4) has two
independent solutions a(1), a(2) and the corresponding b-vectors b�i � � ÿE 0�m0�T�b�ÿ1E�m0�a�i � are also
independent, because otherwise a�i � � Y�m0�T�b�P�m0�fb�i �2 , b

�i �
3 gT(i = 1, 2) cannot be independent.

Consequently, the equation M�m0�fb�i �2 , b
�i �
3 gT � 0 has two independent solutions. This implies that

M�m0� � 0, so that the material is abnormal. We have shown that abnormal materials, originally de®ned
in terms of �b�, have an equivalent characterization in terms of �b�ÿ1: The two equivalent conditions may
be rephrased in the following way: a material is abnormal if and only if the adjoint matrix of M�m� �
PT�m��b�P�m� vanishes for some complex number m; this is so if and only if the adjoint matrix of G�m� �
ET�m��b�ÿ1E�m� vanishes for some m:
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In the contrary case, G�mi � has two independent column vectors for every eigenvalue mi, so that there
is exactly one independent eigenvector corresponding to each simple or repeated eigenvalue. Then the
material is normal.

3. Normal materials

For normal materials the symmetric matrix G�m� has two independent column vectors for every
complex number m: Hence the adjoint matrix Ĝ�m� does not vanish. Eq. (4) has one independent solution
because a must be orthogonal to the two independent column vectors of G�m0�: Evaluating the following
identity at m � m0

GĜ � ĜG � DI, �13�
one obtains

G�m0�Ĝ�m0� � Ĝ�m0 �G�m0� � 0 �14�
Hence the three column vectors of Ĝ�m0� are all proportional to a, i.e, the symmetric matrix Ĝ�m0� is of
rank one. Not all diagonal elements of Ĝ�m0� may vanish because otherwise the o�-diagonal elements Ĝij

� ���p ĜiiĜjj � (with no sum on repeated indices) would also vanish and Ĝ�m0� would be the null matrix. We
choose the column vector of Ĝ containing a nonvanishing diagonal element gk�m� as the a-vector. Then

Ĝ�m0� � aaT=gk�m0� �15�

Eq. (7b) gives the associated b-vector:

b � ÿE 0 T�m0�
�
b
�ÿ1

E�m0�a � ÿ
ÿ
RT � m0T

�
a �16�

Di�erentiation of Eq. (13) yields

GĜ
0 � G 0Ĝ � D 0I �17�

Premultiplying by Ĝ, evaluating the result at m � m0, and using Eqs. (14) and (15), one obtains,

Ĝ�m0�G 0�m0 �Ĝ�m0� � D 0�m0�Ĝ�m0� �
�
D 0�m0�=gk

	
aaT �18�

Since a is chosen to be the kth column of Ĝ�m0�, the kth diagonal element of the preceding matrix
identity has the expression

aTG 0�m0�a �
ÿ
1=gk

�
g2kD

0�m0� � gkD
0�m0�: �19�

Consequently

bTa� aTb � ÿaT
�
R� m0T� RT � m0T

	
a � ÿaTG 0�m0 �a � ÿgkD 0�m0 � �20�

Hence, the eigenvectors corresponding to distinct eigenvalues mi and mj satisfy the orthogonality relation

b�i�Ta�j� � a�i�Tb�j� � ÿa�i�T
�

RT � mjT� R� mjT
�

a�j� � ÿa�i�T
�ÿ
G�mj � ÿ G�mi �

�
=�mj ÿ mi �

	
a�j� � 0 �21�
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In particular, b�i �T Åa�j � � a�i �T Åb
�j � � 0, where Åa�j � and Åb

�j �
are, respectively, the complex conjugates of a�i �

and b�i �:
We now examine the cases of simple, double and triple eigenvalues separately.

3.1. N-simple materials (the SP group)

The equation D�m� � 0 has three distinct roots ms �s � 1, 2, 3� with positive imaginary parts. As shown
before, to each ms is associated a unique pair of eigenvectors fa�s�, b�s�g, where a(s ) is a column vector of
Ĝ�ms� containing a non-zero diagonal element and where b�s� � ÿ�RT � msT�a�s�: Let A � fa�1�, a�2�, a�3�g
and B � fb�1�, b�2�, b�3�g: Then Eqs. (20) and (21) yield

BT ÅA� AT ÅB � 0, �22�

O � BTA� ATB �
24ÿgk�m1�D 0�m1� 0 0
0 ÿgk�m2�D 0�m2 � 0
0 0 ÿgk�m3�D 0�m3�

35 �23�

Consequently, the Barnett±Lothe tensors

H � ÿ2iAOÿ1AT, S � ÿi�2AOÿ1BT ÿ I�, L � 2iBOÿ1BT �24�
have the expressions

H � 2i
X
�1=D 0�ms �Ĝ�ms �,

L � ÿ2i
X
�1=D 0�ms �

ÿ
RT � msT

�
Ĝ�ms ��R� msT�,

S � ÿ2i
X
�1=D 0�ms �Ĝ�ms ��R� msT� � iI: �25�

The ®rst expression of Eq. (25) was obtained by Ting and Lee (1996) using a di�erent derivation.

3.2. N-double materials (the D1 group)

D�m� � 0 has one simple root m̂ and one double root m0 such that Ĝ�m0� is not the null matrix. Let aÃ

denote a nonvanishing column vector of Ĝ�m̂� and let a denote a column vector of Ĝ�m0� containing a
nonzero diagonal element gk: Each is the unique independent eigenvector associated with the respective
eigenvalue. Hence

G
ÿ
m̂
�
Ãa � 0, G�m0�a � 0 �26a,b�

The two eigensolutions associated with these eigenvectors must be supplemented by an additional
solution, given by

u � a�f�x� m0y� � ayf 0�x� m0y�, q � b�f�x� m0y� � byf 0�x� m0y� �27�
where a� and b� must satisfy (see Section 4 of Part I)
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E�m0�a� � E 0�m0�a �
�
b
�
P�m0�

�
b�2
b�3

�
� �b�P 0�m0 �� b2b3

�
�28�

Premultiplying the last equation by ET�m0��b�ÿ1, using P 0 � YJ, ETY � I, ETP � 0 and Eq. (7b), one
obtains the following equation governing a�:

G�m0�a� � G 0�m0�a � 0 �29�

For a double root m0, Eq. (17) reduces to

G�m0�Ĝ
0�m0 � � G 0�m0�Ĝ�m0� � 0 �30�

Since a is a nonvanishing column vector of Ĝ�m0�, the last equation shows that Eq. (29) is satis®ed by
choosing a� to be the corresponding column vector of Ĝ

0�m0�, so that a� � da=dm: Then the vector b�

may be determined from Eq. (28), which, when pre-multiplied by �dET=dm��b�ÿ1, gives the following
expression evaluated at m � m0:

b� � ÿ
ÿ
RT � mT

�
a� ÿ Ta � d

dm

�
ÿ
ÿ
RT � mT

�
a
�

�31�

Thus the generalized eigenvectors a� and b� can be obtained by the derivative rule.
Eq. (17) yields aT b + bT a = 0. The higher order derivatives of Eq. (13)

GĜ
00 � 2G 0Ĝ

0 � 2TĜ � D 00I, GĜ
000 � 3G 0Ĝ

00 � 3TĜ
0 � D 000I �32a,b�

may be used to obtain

a�Tb� b�Ta � ÿgk�m0�D 00�m0�=2,

a�Tb� � b�Ta� � ÿgk�m0�D 000�m0�=6ÿ g 0k�m0�D 00�m0�=2

Since gk�m0� was de®ned as a nonvanishing diagonal element of Ĝ�m0� and since D 00�m0�6�0 for a double
eigenvalue, the ®rst of the preceding two expressions implies that a� and b� are not null vectors. Let A�
fâ, a, a�g and B be the matrix formed of the corresponding b-vectors. One obtains

O � BTA� ATB �

264D 0
ÿ
m̂
�

0 0
0 0 ÿgk�m0 �D 00�m0�=2
0 ÿgk�m0�D 00�m0 �=2 ÿgk�m0 �D 000�m0�=6ÿ g 0k�m0�D 00�m0 �=2

375 �33�

This expression is identical to Eq. (4.12) of Part I except that l2, d and their derivatives in the latter
equation are replaced, respectively, by ÿgk, D and the corresponding derivatives. The Barnett±Lothe
tensors are

H � 2i
h�
1=D 0

ÿ
m̂
�	
Ĝ
ÿ
m̂
�� ÿ2=D 00�Ĝ 0�m0� � �2=3�ÿ1=D 00� 0Ĝ�m0 �i,
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L � ÿ2i
��

1=D 0
ÿ
m̂
�	ÿ

RT � mT
�
Ĝ�R� mT�ÿm̂�� ÿ2=D 00�hÿRT � mT

�
Ĝ�R� mT�

i 0
�m0� � �2=3�

� ÿ1=D 00� 0ÿRT � mT
�
Ĝ�R� mT��m0�

�
,

S � ÿ2i
��

1=D 0
ÿ
m̂
�	
Ĝ�R� mT�ÿm̂�� ÿ2=D 00�hĜ�R� mT�

i 0
�m0� � �2=3�

ÿ
1=D 00

� 0
Ĝ�R� mT��m0�

�
� iI �34�

3.3. N-triple materials (extra-degenerate case)

D�m� � 0 has a triple root m0 and Ĝ�m0� has one independent column vector. We choose a column
vector of Ĝ�m0� containing a nonvanishing diagonal element as the eigenvector a, and let the
corresponding column vectors of the symmetric matricesĜ

0�m0� and Ĝ
00�m0� be denoted by a� and a��,

respectively. For a triple eigenvalue m0 one has

G�m0�Ĝ
00�m0� � 2G 0�m0�Ĝ

0�m0� � G 00�m0�Ĝ�m0� � D 00�m0 �I � 0:

Hence

G�m0�a�� � 2G 0�m0�a� � G 00�m0�a � 0 �35�

Eqs. (29) and (35) ensure that, besides u � af �z� and q � bf�z�, there is a second solution given by Eq.
(27) satisfying the eigenrelation of Eq. (28) and a third solution given by

u � a��f�x� m0y� � a�2yf 0�x� m0y� � ay2f 00�x� m0y�,

q � b��f�x� m0y� � b�2yf 0�x� m0y� � by2f 00�x� m0y�, �36�
which satis®es the eigenrelation

E�m�a�� � 2E 0�m�a� � E 00�m�a �
�
b
��

P�m�
�
b��2
b��3

�
� 2P 0�m�

�
b�2
b�3

�
� P 00�m�

�
b2
b3

��
�37�

The vectors b, b� and b�� are as de®ned by Eqs. (16), (31) and

b�� � ÿ
ÿ
RT � mT

�
a�� ÿ 2Ta� � d2

dm2

�
ÿ
ÿ
RT � mT

�
a
�
, �38�

with the right hand expression evaluated at m � m0: Hence b�� is also obtained by the derivative rule. Let
B�fb, b�, b��g and A�fa, a�, a��g: Then O � BTA� ATB becomes

O �
24 0 0 ÿgkD 000=3
0 ÿgkD 000=6 ÿgkD 0000=12ÿ g 0kD

000=3
ÿgkD 000=3 ÿgkD 0000=12ÿ g 0kD

000=3 ÿgkD 00000=30ÿ g 0kD
0000=6ÿ g 00kD

000=3

35 �39�

where gk is the nonvanishing diagonal element of Ĝ�m0� contained in the column vector a. This
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expression is identical to Eq. (5.13a) in Part I of this paper except that l2, d and their derivatives are
replaced, respectively, by ÿgk, D and the corresponding derivatives. The Barnett±Lothe tensors are

H � ÿ6i=D 000�Ĝ 00 � 3i
ÿ
1=D 000

� 0
Ĝ
0 � �6i=19�ÿ1=D 000� 00Ĝ,

L � ÿÿ6i=D 000�nÿRT � mT
�
Ĝ�R� mT�

o 00
ÿ3iÿ1=D 000� 0nÿRT � mT

�
Ĝ�R� mT�

o 0
ÿ�6i=19�ÿ1=D 000� 00ÿRT

� mT
�
Ĝ�R� mT�,

S � ÿÿ6i=D 000�nĜ�R� mT�
o 00
ÿ3iÿ1=D 000� 0nĜ�R� mT�

o 0
ÿ�6i=19�ÿ1=D 000� 00Ĝ�R� mT� � iI: �40�

4. Examples of extra-degenerate materials

Materials possessing a triple eigenvalue (N-triple and A-triple materials) may be characterized by
explicit relations among the elements of �b], or of �b�ÿ1: In terms of these elements, the triple eigenvalue
x2iZ may also be obtained explicitly. By equating the like powers of m of the following two expressions
of D � jG�m�j

D � jQ� m
ÿ
R� RT

�
� m2Tj � jTj�mÿ xÿ iZ�3�mÿ x� iZ�3

one obtains six identities involving the elastic constants and the real numbers x and Z: Through the
elimination of x and Z, four algebraic relations among the ®fteen independent elastic constants Cij �iRj
and i, j = 1, 2, 4, 5, 6) are obtained. Such materials are extra-degenerate if they are normal, i.e., if the
triple root m0 � x� iZ is not a common root of l2�m� � 0 and l4�m� � 0: An alternative criterion is
Ĝ�m0�6�0: Here x and Z are easily found to be

x � ÿ�1=3�tr
�
Tÿ1

ÿ
R� RT

��
=jTj, Z �

h�jQj=jTj	1=3ÿx2
i1=2

�41�

In terms of the elements of �b], one has (Ting, 1998)

x � �1=3��b11b45 � b16b55 � b15
ÿ
b14 � b56

�	
=
�
b11b55 ÿ b2

15

�
,

Z �
"��

b22b44 ÿ b2
24

�
=
�
b11b55 ÿ b2

15

��1=3

ÿx2

#1=2 �42�

To obtain a new class of extra-degenerate materials, we let a be any positive number and a be such that
0 < a < 3 and a 6�1: Consider elastic materials with

b24 � b16 � b26 � b45 � b14 � b56 � b25 � b46 � 0 �43�
and

b55=b44 � a=a2,
ÿ
b66 � 2b12

�
=b22 � �3ÿ a�=a2, �44a,b�
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b11=b22 �
ÿ
a2 ÿ 3a� 3

�
=a4, b15=

ÿp
b22b44

� � �aÿ 1�3=2=a3, �44c,d�
Then

l2 � b44
�
a�m=a�2�1

	
, l3 �

ÿp
b22b44

��aÿ 1�3=2�m=a�3,

l4 � b22

nÿ
a2 ÿ 3a� 3

�
�m=a�4��3ÿ a��m=a�2�1

o
,

l2l4 ÿ l 23 � b22b44
�
�m=a� 2�1

	3
,

Thus m �2ia are triple roots and

l2�ia� � ÿ�aÿ 1�b44, l3�ia� � ÿi�aÿ 1�3=2 ÿp
b22b44

�
, l4�ia� � �aÿ 1�2b22,

do not vanish since a 6�1: The class of materials given above can have a positive de®nite strain energy if
the bij's are properly restricted. To demonstrate this contention we consider the subclass of materials
that satisfy, in addition, b14 � b25 � 0: Then b24 � b56 � b25 � b46 � 0 imply that b56 � b46 � 0: Hence
the strain energy density function U0 has the expression

2U0 � b11s
2
x � b22s

2
y � 2b12sxsy � 2b15sxtxz � b55t

2
xz � b44t

2
yz � b66t

2
xy

�
n�

b11b55 ÿ b2
15

�
=b55

o
s2
x � 2b12sxsy � b22s

2
y � b55

ÿ
sxb15=b55 � txz

�2�b44t2yz � b66t
2
xy:

Eqs. (44a, c and d) yield �b11b55ÿb2
15�=b55�b22=�aa4�: Consequently,

2U0 � b22
n
s2
x=�aa4� � 2sxsyb12=b22 � s2

y

o
� b55

ÿ
sxb15=b55 � txz

�2�b44t2yz � b66t
2
xy

and U0 is positive de®nite if 1=�aa4� > �b12=b22�2: This inequality condition is ensured by Eq. (44b) if the
following restriction is made on b66=b22:

jb66=b22 ÿ �3ÿ a�=a2j < 2=
ÿ
a2 a
p �

:

The subclass of materials satisfying this restriction is certainly not empty since b22 and b66 are
independent elastic constants of anisotropic materials.

The extra-degenerate materials found above are di�erent from the examples given by Ting (1996b),
although the two classes share certain similar features. In de®ning both classes of materials the reference
coordinate axes x and y have been chosen so that the triple eigenvalue is purely imaginary. These are
intrinsic material axes, not arbitrarily picked directions. In Ting's examples b15 � b24 � 0: This implies
that a uniaxial stress along the x-direction will not produce anti-plane shear strain gxz, and a uniaxial
stress along the y-direction will not produce gyz: In the present examples, b24 vanishes but b15 does not.
Hence the behavior of the two classes of materials is di�erent.

5. Abnormal materials

Abnormal materials have an eigenvalue m0 such that G�m0� has only one independent column vector.
Then the elements of the adjoint matrix, which are 2� 2 minors of G�m0�, must all vanish:
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Ĝ�m0� � 0: �45�

G�m0�Ĝ
0�m0 � � D 0�m0 �I: �46�

Since G�m0� is singular, Eq. (46) implies that D 0�m0� � 0: Hence m0 is a repeated eigenvalue and

G�m0�Ĝ
0�m0 � � 0: �47�

By eliminating the terms of the third and fourth power in m from the six quartic equations Ĝij�m� � 0 (i,
j = 1, 2, 3), one obtains quadratic equations that can be solved for the repeated eigenvalue m0: Once m0
is determined, the remaining eigenvalue m̂, if di�erent from m0, may be obtained from the quadratic
equation �mÿ m0�ÿ2�mÿ �m�ÿ2D�m� � 0: However, simpler explicit expressions of the eigenvalues of
abnormal materials may be given in terms of the anisotropic elastic compliances bij (Ting, 1999).

We now show that Ĝ
0�m0� is not the null matrix. Suppose the contrary, then m0 would be a double

root of all elements of Ĝ�m�, i.e.,

Ĝ�m� � �mÿ m0�2�mÿ �m0 �2 ÃT,

where ÃT � jTjTÿ1 denotes the adjoint of the constant symmetric matrix T. Then Eq. (13) yields

G�m� � �mÿ m0�ÿ2�mÿ �m0 �ÿ2
�
D�m�=jTj

	
T:

Since G�m0� is singular but T is not, The last identity implies that m0 must be a triple root of D�m� � 0
and therefore D�m� � �mÿ m0�3�mÿ �m0�3jTj: Then

G�m� � �mÿ m0��mÿ �m0 �T,

so that G�m0� � 0: As shown in Section 2, this may happen only if the elasticity matrix �b�ÿ1 is singular.
Otherwise the supposition Ĝ

0�m0� � 0 cannot be valid.
Eq. (47) shows that the column vectors of Ĝ

0�m0� are solutions of Eq. (4). There are at most two
independent column vectors because each vector must be orthogonal to the unique independent row
vector of G�m0�: The independent column vectors of Ĝ

0�m0� will be chosen as independent a-vectors. If
Ĝ
0�m0� has only one independent column vector a(1), then a second a-vector may be chosen as

a�2� � v� a�1�, where v is a nonvanishing column of G�m0�:
For A-double materials the two independent a-vectors associated with the double eigenvalue m0 are

supplemented by another a-vector associated with a simple eigenvalue m̂: The latter may be chosen as a
nonvanishing column vector of Ĝ�m̂�: For each a-vector, Eq. (16) yields the corresponding b-vector.

For A-triple materials the two independent a-vectors associated with the triple eigenvalue m0 are
supplemented by a generalized eigenvector a�. Since D 00�m0� � 0, Eq. (32a) reduces to

G�m0�Ĝ
00�m0� � 2G 0�m0�Ĝ

0�m0� � 0: �48�

At least one of the two independent a-vectors is a column vector of Ĝ
0�m0�: Hence Eq. (29) is satis®ed if

a� is taken to be (1/2) times the corresponding column vector of Ĝ
00�m0�:

The Barnett±Lothe tensors of A-double and A-triple materials are given by the expressions for N-
Double and N-Triple materials, respectively, where the terms containing Ĝ�m0� vanish.
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6. Identities involving the Barnett±Lothe tensors

We have shown that for every type of anisotropic materials (nondegenerate, degenerate or extra-
degenerate; normal or abnormal) a set of three independent eigenvectors or generalized eigenvectors
may be explicitly found in terms of the eigenvalues and the elements of �b], or of �b�ÿ1: Let A� fa�1�,
a�2�, a�3�g and B�fb�1�, b�2�, b�3�g: Then the matrix O � BTA� ATB is nonsingular, and the orthogonality
relations of Eqs. (22) and (23) are satis®ed. As shown in Part I, these relations imply that L, H and S as
de®ned by Eq. (24) are real matrices, and L and H are symmetric and non-singular. The three tensors
may also be expressed as follows

N� �
�

S H
ÿL ST

�
�
�

A ÅA
B ÅB

��
ÿiOÿ1 0
0 i �O

ÿ1
��

BT AT

ÅB
T ÅA

T

�
�49a�

�
H S
ST ÿL

�
�
�

A ÅA
B ÅB

��
ÿiOÿ1 0
0 i �O

ÿ1
��

AT BT

ÅA
T ÅB

T

�
�49b�

Multiplication of the preceding two matrices and use of Eqs. (22) and (23) yields�
S H
ÿL ST

��
H S
ST ÿL

�
�
�

SH�HST ÿHL� SS
ÿLH� STST ÿLSÿ STL

�
�
�

0 ÿI
ÿI 0

�
:

Hence

HLÿ SS � I � LHÿ STST, �50�
and SH and LS are skew-symmetric. Then the matrices

Hÿ1S � Hÿ1�SH�Hÿ1, SLÿ1 � Lÿ1�LS�Lÿ1

are also skew-symmetric. Furthermore, Eq. (24) yields

ABÿ1L � 2iAOÿ1BT � ÿS� iI, BAÿ1H � ÿ2iBOÿ1AT � ST ÿ iI:

Hence,

ABÿ1 � ÿSLÿ1 � iLÿ1, BAÿ1 � STHÿ1 ÿ iHÿ1: �51�
Notice that the real parts of ABÿ1 and BAÿ1 are skew-symmetric and the imaginary parts are
symmetric. Eq. (51) also implies that I + iS is a nonsingular matrix.

For nondegenerate materials, the preceding relations among the matrices L, H, S and ABÿ1 are well
known. A proof for degenerate (but not extra-degenerate) materials was given by Ting and Hwu (1988).
Using the general relations of Eqs. (22), (24) and O � BTA� ATB for unnormalized eigen vectors and
generalized eigenvectors. the present proof establishes the validity of Eqs. (50), (51) and the skew-
symmetry of SH and LS for all types of anisotropic materials.

Eq. (50) implies that any one of the three matrices L, H and SS is determined by the other two.
However, S is determined by L and H only up to a scalar factor21. To calculate 2S in terms of L and
H, we ®rst notice that S � �SLÿ1�L is the product of a skew-symmetric matrix and a symmetric matrix.
Hence ÿST � L�SLÿ1�: It follows that S and ÿST have the same trace and determinant, and hence both
invariants must vanish. Then the characteristic equation of S has the form l3 � s2l � 0 where (Ting,
1996a)
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s2 � ÿtr�SS�=2 � 3=2ÿ tr�HL�=2: �52�
Since S satis®es its own characteristic equation, one has S3 � ÿs2S: Eq. (50) then yields S�SHLÿS3�
SHL�s2S: Hence the skew-symmetric matrices SH and SLÿ1 satisfy

SH
��1ÿ s2�Hÿ1 ÿ L

	
� 0, SH � �1ÿ s2�SLÿ1: �53�

Similarly, the following equations are satis®ed by LS and Hÿ1S��1ÿ s2�Lÿ1 ÿH
	
LS � 0, LS � �1ÿ s2�Hÿ1S: �54a,b�

It is an algebraic theorem that if ZW = 0 for a 3 � 3 symmetric matrix Z and a nonvanishing 3 � 3
skew-symmetric matrix W, then all three column vectors of Z must be proportional to the axial vector
of W (the axial vector is de®ned by w� fW23, ÿW13, W12gT in terms of the nonvanishing elements of
W), i.e., Z is a scalar multiple of

wwT �WWÿ �1=2�tr�WW�I:
Using this theorem in conjunction with Eqs. (52) and (54a, b), we conclude that any nonvanishing
column vector v� fv1, v2, v3gT of the symmetric matrix ftr�HL�=2ÿ 1=2gLÿ1 ÿH is proportional to the
axial vector of the skew-symmetric matrix Hÿ1 S. Hence

Hÿ1S � rV �55�
for some real scalar r, where

V �
24 0 v3 ÿv2
ÿv3 0 v1
v2 ÿv1 0

35 �56�

Then S � rHV and SS � HLÿ I � r2HVHV: Consequently

LÿHÿ1 � r2VHV, �57�
so that

r2 �
�
tr�L� ÿ tr�Hÿ1�

	
=tr�VHV� �58�

Then S � rHV is completely determined except for a scalar factor 21 involved in the de®nition of V.
This scalar factor is not determined by L and H.

Besides the preceding relations among L, H and S, additional relations may be found that involve
also the elasticity matrices Q, R and T. These relations may be used to simplify the explicit expressions
of the Barnett±Lothe tensors.

Using Eq. (16) and b � BAÿ1a, one obtainsÿ
BAÿ1 � RT � mT

�
a � 0: �59�

Substitution into G�m�a � 0 yields�
Q� m�Rÿ BAÿ1 �

	
a � 0: �60�

Premultiplying Eq. (59) by �Rÿ BAÿ1�Tÿ1 and substituting the result into Eq. (60), one obtains the
following equation that does not contain the eigenvalue m:
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��Rÿ BAÿ1�Tÿ1
ÿ
RT � BAÿ1

�
ÿQ

	
a � 0: �61�

In the case of generalized eigenvectors a� and a��, one may use Eqs. (31) and (38) to obtainÿ
RT � mT� BAÿ1

�
a� � ÿTa, �62a�

ÿ
RT � mT� BAÿ1

�
a�� � ÿ2Ta�: �62b�

Substitution into Eqs. (29) and (35) yields�
Q� m�Rÿ BAÿ1 �

	
a� � �Rÿ BAÿ1�a � 0, �63a�

�
Q� m�Rÿ BAÿ1 �

	
a�� � 2�Rÿ BAÿ1�a� � 0: �63b�

Premultiplying Eqs. (62a) and (62b) by (R ÿ BAÿ1)Tÿ1 and combining the results with Eqs. (63a) and
(63b), one ®nds that Eq. (61) is also satis®ed by the generalized eigenvectors a� and a��. Thus, there are
always three independent vectors satisfying Eq. (61). Consequently,

�Rÿ BAÿ1�Tÿ1
ÿ
RT � BAÿ1

�
ÿQ � 0: �64�

Using Eq. (51), the last equation may be separated into real and imaginary parts:

�Rÿ STHÿ1 �Tÿ1
ÿ
RT � STHÿ1

�
�Hÿ1Tÿ1Hÿ1 � Q: �65�

Hÿ1Tÿ1
ÿ
RT � STHÿ1

�
� �Rÿ STHÿ1�Tÿ1Hÿ1: �66�

Eq. (66), when premultiplied by TH and postmultiplied by HT, becomes

RTHT� STT � THR� TS �67�
The last two equations imply the symmetry of the matrices Hÿ1Tÿ1 (RT + STHÿ1) and T(HR + S).
Substituting Eq. (66) into Eq. (65), postmultiplying the result by HT, and using Eq. (50) and the skew-
symmetry of SH, one obtains an expression of L depending linearly on H and S:

L � QHTÿ RHRÿ RS� STR: �68�
As mentioned before, S is determined by L and H except for a multiplicative factor21. This factor may
be determined by using either one of the last two equations. An alternative proof of Eq. (68) may be
given on a case by case basis through direct substitution of Eqs. (25), (34) and (40) into Eq. (68) and
using Eqs. (13), (17) and (32a) in conjunction with the vanishing of D, D 0 and D 00 for simple, double and
triple roots.

Using a di�erent combination of Eqs. (59) and (60), one may obtain, through an analogous
derivation, the following result instead of Eq. (64):ÿ

RT � STHÿ1 ÿHÿ1
�
Qÿ1

ÿ
Rÿ STHÿ1 �Hÿ1

�
� T: �69�

The real part of Eq. (69) again yields Eq. (68). The imaginary part implies symmetry of Q�HRT ÿ S�:
The eigenvalues and the Barnett±Lothe tensors are determined by the three elasticity matrices Q, R

and T. When the Barnett±Lothe tensors are known, Eq. (66) gives the elasticity matrix Q in terms of R
and T while Eq. (69) gives T in terms of R and Q.
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7. Equivalence of the dual formalisms

A concise and rigorous proof of the equivalence of the two formalisms and, in particular, of the two
characteristic equations d�m� � 0 and D�m� � 0, may be given based on the eigenrelations of Eqs. (3),
(28) and (37). We de®ne

D �
�
0 1 0
0 0 1

�
�70�

Then, using Eqs. (11), (2a,b), (8a,b) and (10) and the identity PTE � 0, one obtains

M

�
DE 0 T

�
b
�ÿ1

Ea

�
� PT

�
b
�
P

�
0 1 0 0 0
0 0 1 0 0

��
b
�ÿ1

Ea � PT
�
b
�ÿÿ I� YET

��
b
�ÿ1

Ea

� PT
�
b
�
YGa: �71�

If G�m�a � 0 where m is a root of D�m� � 0 and a is a nontrivial vector, then the last equation implies
that b�ÿ�E 0 T�b�ÿ1Ea� is a solution of M�m�Db � 0: The latter vector cannot be the null vector because
if it were, then

YT
�
b
�
PDb � ÿYT

�
b
�
PDE 0 T

�
b
�ÿ1

Ea � YT
�
b
��Iÿ YET ��b�ÿ1Ea � YTEaÿ YT

�
b
�
YGa � a

would also be the null vector, contradicting the premise that a is a nontrivial solution of G�m�a � 0: The
preceding derivation shows that m must also be a root of the equation d�m� � 0:

If m is a repeated root of D�m� � 0 with more than one independent a-vectors, then the preceding
proof also implies that there is an equal number of independent b-vectors. In the degenerate cases there
may be one or two generalized a-vectors associated with m, in addition to one or two independent
eigenvectors. For normal materials one of the independent eigenvectors a may be chosen as a non-
vanishing column vector of Ĝ�m� so that G�m�a � D�m�e; for abnormal materials a may be chosen as a
non-vanishing column vector of Ĝ

0�m� so that G�m�a�D 0�m�e (in both cases e denotes the corresponding
column vector of the 3 � 3 identity matrix). Then, for the degenerate case (N-double and A-triple
materials), Ga and �d=dm��Ga� both vanish when evaluated at the repeated root of D�m� � 0; for the
extra-degenerate case (A-triple materials), Ga and its ®rst two derivatives vanish when evaluated at the
triple root of D�m� � 0: By di�erentiating Eq. (71) with respect to m once or twice, and using Eqs. (29)
and (35), one obtains

MDb� �M 0Db � 0, MDb�� � 2M 0Db� �M 00Db � 0,

where

b � ÿE 0 T
�
b
�ÿ1

Ea, b� � db

dm
, b�� � d2b

dm2
:

Therefore, there are an equal number of generalized b-vectors associated with the eigenvalue m:
An analogous proof may be given for the converse statement, which starts from the assumption that

m is a root of d�m� � 0 with a nontrivial vector b satisfying M�m�Db � 0, and leads to the conclusion that
YT�b�PDb is a nontrivial solution of G�m�a � 0: This proof, and its extension to the degenerate and
extra-degenerate cases, are omitted for the sake of brevity. The two conclusions taken together imply
that m is a root of d�m� � 0 if and only if it is a root of D�m� � 0, and that the eigenvectors and
generalized eigenvectors in one formalism yield directly those of the other formalism through Eqs. (16),
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(31) and (38) or through the converse relations a � YT�b�PDb, a� � �d=dm��YT�b�PDb� and a�� �
�d2=dm2��YT�b�PDb�:

We note that a direct if somewhat lengthy algebraic proof of the equivalence of the two characteristic
equations d�m� � 0 and D�m� � 0 (but not the equivalence of the eigenspaces of the two formalisms) was
given recently by Barnett and Kirchner (1997).

8. The six-dimensional eigenmatrix N

The derivations based on the two formalisms, one in terms of the elements of �b� and the other in
terms of �b�ÿ1, lead to the same classi®cation of anisotropic materials into ®ve distinctive types
depending on the multiplicity of eigenvalues and, if there is a multiple eigenvalue m0, whether or not the
adjoint matrix of M�m0� or that of G�m0� vanishes. For each type of material, explicit expressions are
obtained in both formalisms for the eigenvectors and the associated eigensolutions of the displacements
and the stresses. The generalized eigenvectors and the corresponding eigensolutions are given by the
derivative rule. Depending on the multiplicity of eigenvalues, various explicit expressions are also given
for the Barnett±Lothe tensors in both formalisms. Except for the trivial numerical task of ®nding the
roots of the characteristic equation (even this can be avoided for abnormal materials and N-triple
materials), all other matters concerning the representation of general solutions are reduced to evaluation
of algebraic expressions.

The Stroh formalism is often presented in terms of six-dimensional eigenmatrices and eigenvectors. In
this form, the formalism does not suggest appropriate analytical expressions of the eigenvectors a and b
(as functions of m� which, in the case of a repeated eigenvalue, may produce the generalized eigenvectors
according to the derivative rule. It also does not directly yield three sets of explicit expressions of the
Barnett±Lothe tensors depending on the multiplicity of eigenvalues. The usual presentation of the
subject is further complicated, not simpli®ed, by using normalized eigenvectors. Analytical results and
conclusions in this formalism have been obtained mostly for the non-degenerate case and occasionally
for degenerate materials by modifying the proof. In the following, we obtain certain key expressions in
the six-dimensional formalism through a uni®ed derivation comprising all cases of material degeneracy.

For an eigenvalue m and associated eigenvectors a and b, Eqs. (4) and (7b) yield

ÿ
ÿ
RT � mT

�
a � b, �Q� mR�a � mb: �72a,b�

These equations may be rewritten in the form

Nx � mx, NTZ � mZ: �73a,b�
where

N �
�
ÿTÿ1RT ÿTÿ1

Qÿ RTÿ1RT ÿRTÿ1

�
, x �

�
a
b

�
, Z �

�
b
a

�
�74a,b,c�

Since N is a real matrix, if m is an eigenvalue with the eigenvector x then �m is also an eigenvalue with the
associated eigenvector �x: N is called simple if it has three distinct complex conjugate pairs of
eigenvalues. It is called non-semisimple if there is a repeated eigenvalue with only one independent
eigenvector. Otherwise N is called semisimple. It is clear that the matrix N of a normal material is either
simple or non-semisimple, and that of an abnormal material is semisimple. Unlike the preceding
formalisms based on three-dimensional eigenrelations, the six-dimensional Stroh formalism does not
imply straightforwardly the impossibility of three independent complex conjugate pairs of eigenvectors
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associated with a triple eigenvalue of N (i.e., the impossibility for N to be ``extraordinary semisimple''),
unless the material has a non-positive de®nite strain energy. A proof was given by Ting (1997). In the
present analysis, the conclusion follows trivially because the eigenmatrix M�m� is two-dimensional. If m is
a double eigenvalue with only one independent pair of eigenvectors (N-double materials), then Eqs. (10),
(29) and (31) yield

ÿ
ÿ
RT � mT

�
a� ÿ Ta � b�, �Q� mR�a� �

�
R� RT � mT

�
a � mb�, �75a,b�

which may be rewritten as

N

�
a�

b�

�
� Nx� � mx� � x, NT

�
b�

a�

�
� NTZ� � mZ� � Z: �76a,b�

If m is a triple eigenvalue with only one independent pair of eigenvectors (N-triple material), then Eqs.
(10), (35), (38) and (75a) yield

ÿ
ÿ
RT � mT

�
a�� ÿ 2Ta� � b��, �Q� mR�a� � 2Ra� ÿ 2b� � mb��, �77a,b�

or

N

�
a��

b��

�
� Nx�� � mx�� � 2x�, NT

�
b��

a��

�
� NTZ�� � mZ�� � 2Z�: �78a,b�

The matrix N does not suggest appropriate analytical expressions of a and b in terms of m for the
application of the derivative rule. Hence the generalized eigenvectors cannot be obtained by
di�erentiation and must be determined by solving Eqs. (76a,b) and (78a,b). However, if a is chosen to
be a column vector of Ĝ�m� (or of Ĝ

0�m� if Ĝ�m� vanishes), as suggested in Section 3, then, with
b � ÿ�RT � mT �a, the derivative rule applies and Eqs. (76a,b) and (78a,b) may be written as

d=dm
��Nÿ mI�x� � 0, d2=dm2

��Nÿ mI�x� � 0,

d=dm
�ÿ

NT ÿ mI
�
Z
�
� 0, d2=dm2

�ÿ
NT ÿ mI

�
Z
�
� 0:

For a non-degenerate material, let P be the diagonal matrix whose elements are the eigenvalues mi (i =
1, 2, 3) with positive imaginary parts and let A�fa�m1�, a�m2�, a�m3�g and B�fb�m1�, b�m2�, b�m3�g: For
the degenerate and extra-degenerate case, P is taken to be, respectively,24 m̂ 0 0

0 m0 1
0 0 m0

35 and

24 m0 1 0
0 m0 2
0 0 m0

35
(where m̂ � m0 for A-triple materials). For the degenerate case de®ne A� fa�m̂�, a�m0�, a��m0�g and B�
fb�m̂�, b�m0�, b��m0�g whereas for the extra-degenerate case A � fa�m0�, a��m0�, a���m0�g and B � fb�m0�,
b��m0�, b���m0�g: Eqs. (73a,b), (76a,b) and (78a,b) yield

N

�
A
B

�
�
�

A
B

�
P, NT

�
B
A

�
�
�

B
A

�
PT �79a,b�

Since N is a real matrix, one has
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N

�
A ÅA
B ÅB

�
�
�

A ÅA
B ÅB

��
P 0
0 ÅP

�
, NT

�
B ÅB
A ÅA

�
�
�

B ÅB
A ÅA

��
PT 0
0 ÅP

T

�
�80a,b�

Eq. (22) and O = ATB + BTA yield�
BT AT

ÅB
T ÅA

T

��
A ÅA
B ÅB

�
�
�
O 0
0 �O

�
�81�

and the closure relations (see Section 3 of Part I)�
A ÅA
B ÅB

��
Oÿ1 0
0 �O

ÿ1
��

BT AT

ÅB
T ÅA

T

�
�
�

I 0
0 I

�
�82�

The last equation and Eq. (80a) yield

N �
�

A ÅA
B ÅB

��
POÿ1 0
0 ÅP �O

ÿ1
��

BT AT

ÅB
T ÅA

T

�
�83�

Using Eq. (49a), one obtains

N�N � NN� �
�

A ÅA
B ÅB

��
ÿiPOÿ1 0
0 i ÅP �O

ÿ1
��

BT AT

ÅB
T ÅA

T

�
�84�

For the case of simple or semisimple N, relations similar to Eqs. (49a), (73a,b), (76a,b), (80a,b), (83) and
(84) have been given in terms of normalized eigenvectors (Ting, 1996a, 1996b), for which O � I: The
present equations, in terms of unnormalized eigenvectors and generalized eigenvectors, are valid for all
types of anisotropic materials.

9. Summary and conclusion

Formulation of the eigensolutions in terms of the elastic sti�ness �b�ÿ1 yields the same classi®cation of
anistropic materials into ®ve mutually exclusive types. The eigenvalues are the roots of the characteristic
equation D�m� � jG�m�j � 0: For each eigenvalue m, the a-vector is determined ®rst by choosing a
nontrivial column vector of the adjoint matrix Ĝ�m�: For an abnormal material there is an eigenvalue
with Ĝ�m� � 0: Then Ĝ

0�m� does not vanish and it contains one or two independent columns to be chosen
as the a-vectors. The b-vector associated with an a-vector is given by Eq. (16). If D�m� � 0 has a
repeated root and the number of independent eigenvectors is less than three, additional eigensolutions
may be obtained in the form of Eqs. (27) and (36), where the generalized eigenvectors are obtained from
the eigenvectors by the derivative rule.

The transformation rules of Eq. (7a,b) are valid for eigenvectors only and not for generalized
eigenvectors. These transformation rules, along with the derivative rule, map the eigenspace of the a-
vectors (and generalized a-vectors) in the Stroh formalism into the eigenspace of the b-vectors (and
generalized b-vectors) in the Lekhnitskii formalism, and vice versa. This dual relation is based on Eq. (3)
and its generalizations to the degenerate and extra-degenerate cases, Eqs. (28) and (37). The three
equations immediately yield the eigenrelations of Eqs. (4), (29) and (35) in the Stroh formalism when
one chooses to work with the sti�ness matrix �b�ÿ1; they provide the eigenrelations of the Lekhnitskii
formalism (i.e., Eq. (5) of this part and (4.5) and (5.5) of Part I) if one uses instead the reduced
compliance matrix �b�: The latter set of eigenrelations show the latent structure of the Lekhnitskii
formalism that was originally found and used in a singularity analysis of multi-material wedges (Yin,
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1997). By using the two sets of eigenrelations, analytical expressions of all eigenvectors may be obtained
in terms of the eigenvalues and the elements of �b�ÿ1 or of �b�: However, the expressions are much
simpler in the Lekhnitskii formalism. A concise proof of the equivalence of the dual formalisms,
including the equivalence of the characteristic equations d�m� � 0 and D�m� � 0, is given in Section 7.The
eigenvectors in each formalism satis®es the modi®ed orthogonality and closure relations [Eqs. (81) and
(82)]. These relations contain the matrix O0BTA + ATB, whose algebraic form depends on the ®ve
types of anisotropic materials. The Barnett±Lothe tensors may be obtained, in both Lekhnitskii and
Stroh formalisms and for all types of materials according to the same Eq. (24), in terms of Oÿ1 and the
respective sets of a- and b-vectors (based, respectively, on �b� and �b�ÿ1). We notice that, in the existing
literature, normality and closure relations as well as the Barnett±Lothe tensors are expressed in terms of
normalized eigenvectors for which O reduces to the identity tensor. Such relations are not valid in the
degenerate and extra-degenerate cases. However, with the inclusion of the matrix O and its various
expressions for di�erent types of materials, a signi®cant number of important relations in anisotropic
elasticity assume universally valid forms independent of material degeneracy. These include the modi®ed
orthogonality and closure relations, Eqs. (24), (49a), (49b), (83) and (84). Some new identities relating
the Barnett±Lothe tensors and the elasticity matrices are given as Eqs. (65)±(69).

Although the eigenrelations establish a true dualism between the two formalisms, an asymmetry is
introduced in the dualism by the relation b1 � ÿmb2, which causes the b-vectors to be determined by a 2
� 2 eigenmatrix M�m�: Thus the various expression in the Lekhnitskii formalism involve the 2 � 2
adjoint matrix U�m� and its derivatives, whereas those in the Stroh formalism involve the 3 � 3 matrix
Ĝ�m� and its derivatives. Notice that each element of Ĝ�m� is the determinant of a 2 � 2 sti�ness matrix.
While the resulting expressions of the Barnett±Lothe tensors in the two formalisms have analogous
matrix forms, the detailed expressions are signi®cantly more complicated in the Stroh formalism. The
same is true for the general solutions of the displacements and the stress, particularly in the degenerate
and extra-degenerate cases, where the generalized eigensolutions may be obtained by di�erentiating
analytical expressions of the eigensolutions. It appears that most of the signi®cant theoretical results on
general solutions of elastostatics previously obtained in the Stroh formalism (i.e., in terms of the
elements of �b�ÿ1� can be obtained in simpler forms, and in a simpler way, by using the Lekhnitskii
formalism.
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